NOTES

$\alpha_{n}\alpha'$ -Dipyridyl as a phenol-detecting reagent

Detecting reagents, originally developed for use with chromatography, are used frequently with little or no modification in thin-layer chromatography. Examples of these are the widely used reagents for detecting phenols, diazotized sulphanilic acid¹ and ferric ferricyanide (FF)². If, however, permanence of the chromatoplate is a requisite, then the FF detector is unsuitable since the unreacted reagents cannot be washed out from the water sensitive silica gel, and a blue background colour rapidly develops. Attempts to modify the FF reagent to eliminate this background colour resulted in a new phenol-detecting reagent applicable to both paper and thin-layer chromatography.

Based on the theory proposed by BROUMAND AND SMITH³ that ferric chloride in the presence of phenols forms a 1:1 complex, $Fe(OAr)^{2+}$, it follows that colour tests sensitive to ferrous ion, such as reaction with potassium ferricyanide and α, α' -dipyridyl⁴, should also detect the ferric-phenol complex. In fact, a satisfactory detection of phenolics results on either papergrams or chromatoplates when sprayed with a freshly mixed solution of 0.5 % (w/v) aqueous ferric chloride and 0.5 % (w/v) methanolic α, α' -dipyridyl. This provided additional evidence of the presence of the Fe(OAr)²⁺ complex, and the validity of the explanation of the formation of the blue complex with potassium ferricyanide as outlined in a previous paper².

Wherever reaction between ferric chloride and phenolic hydroxyl had occurred, red spots characteristic of the ferrous- α, α' -dipyridyl were formed when a wide spectrum of simple and complex phenols was tested. Although full colour development required 30 min the ultimate sensitivity was the same as for the FF reagent, namely I γ , but with negligible background colour.

Vancouver Laboratory, Department of Forestry of Canada, G. M. BARTON* Forest Products Research Branch, Vancouver (Canada)

2 G. M. BARTON, R. S. EVANS AND J. A. F. GARDNER, Nature, 170 (1952) 249.

3 H. BROUMAND AND J. H. SMITH, J. Am. Chem. Soc., 74 (1952) 1013.

4 F. P. TREADWELL AND W. T. HALL, Analytical Chemistry, Qualitative Analysis, Vol. I, Wiley, New York, 1947, p. 210.

Received March 4th, 1965

kankarina Kaj * Research Officer, Vancouver Laboratory, FPRB.

J. Chromatog., 20 (1965) 189

I I. SMITH, Chromatographic Techniques, William Heinemann Medical Books Ltd., London, 1958, p. 145.